Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Plant Res ; 136(5): 715-728, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37266742

RESUMO

Gall anatomical and metabolic peculiarities are determined by the feeding habit of the gall inducer, but develop under the constraints of the host plants. The chewing habit of the Lepidoptera larvae imposes a high impact on the host plant cells, and supposedly drives peculiar structural and histochemical patterns. So, our starting point was the search of such patterns in literature, and the test of these traits on the Andescecidium parrai (Cecidosidae)-Schinus polygama (Anacardiaceae) system, as a case study in Chilean flora. The literature on the structure of lepidopteran galls in the temperate and tropical regions comprises 13 works, describing stems as the most frequent host organs, followed by leaves, buds, and flowers. As common structural traits of Lepidoptera galls, the literature converge in describing the processes of cell hypertrophy and hyperplasia, resulting in a variable number of common storage parenchyma layers, interspersed by the redifferentiated sclerenchyma, vascular, and typical nutritive cells around the larval chamber. These nutritive cells accumulate lipids and proteins, which support the lepidopteran larvae nutrition. As expected, the A. parrai galls follow the patterns herein described for the lepidoptera-induced galls, but with peculiarities associated with its host organ. Even though the Lepidoptera galls have destructive mouthparts and can induce large and complex galls, they cannot alter important conservative features of their hosts' organs.


Assuntos
Anacardiaceae , Lepidópteros , Animais , Schinus , Tumores de Planta , Larva , Interações Hospedeiro-Parasita
2.
Plant Sci ; 314: 111114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895543

RESUMO

Reactive oxygen species (ROS) are considered the first signaling molecules involved in gall development, linked to the establishment of cyto-histological gradients leading to gall tissue redifferentiation. ROS overproduction induces the failure of gall establishment or its premature senescence. Galls could therefore have efficient mechanisms of ROS dissipation and maintenance of homeostasis, such as polyphenol synthesis. The co-occurrence of ROS and polyphenols in the Espinosa nothofagi galls induced on Nothofagus obliqua buds was explored and was related to the antioxidant capacity of the inner (IC) and outer (OC) gall compartments. We hypothesize that: (i) ROS are produced and accumulated in both tissue compartments of E. nothofagi galls in co-occurrence with polyphenolic, flavonols, and lignin, conferring high antioxidant activity to inner and outer gall tissue compartment; (ii) antioxidant activity is higher in IC related to a higher polyphenol concentration in this compartment. The results show that ROS and polyphenols, mainly flavonols, are produced and accumulated in IC and OC, while lignin accumulated mainly in the IC. In both gall compartments, polyphenols mediate ROS elimination, confirmed by histochemical and spectrophotometry techniques. The IC extract has the highest antioxidant capacity, probably due to lignin deposition and a higher polyphenol concentration in this compartment.


Assuntos
Antioxidantes/metabolismo , Fagales/metabolismo , Fagales/parasitologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Insetos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/metabolismo , Tumores de Planta/parasitologia , Animais , Chile , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA